
113 Class Problems: Polynomial Fazorization

1. (a) The polynomial x2 + 1 has no roots in R. However when we go to C two roots
appear, namely ±i. Why is this nowhere near enough to conclude C is algebraically
closed?

(b) Prove that the quotient ring R[x]/(x2 + 1) is a field. What familiar field is it
isomorphic to?

Solutions:

2. Let F be a field and f(x) ∈ F [x] be an irreducible polynomial of degree n > 1. Does
there exist α ∈ F such that f(α) = 0F ?

Solutions:
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3. Is it possible for a finite field F to be algebraically closed?

Solutions:

4. (a) Recall that Q[i] = {a+ bi|a, b ∈ Q} is a field. Is it algebraically closed?

(b) Is the field C(z) algebraically closed?

Solutions:
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