113 Class Problems: Polynomial Fazorization

1. (a) The polynomial z* + 1 has no roots in R. However when we go to C two roots
appear, namely +i. Why is this nowhere near enough to conclude C is algebraically

closed?

(b) Prove that the quotient ring R[z|/(z* + 1) is a field. What familiar field is it
isomorphic to?
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2. Let F be a field and f(z) € F[z] be an irreducible polynomial of degree n > 1. Does
there exist a € F' such that f(a) = 0p7
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3. Is it possible for a finite field F' to be algebraically closed?
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4. (a) Recall that Q[i] = {a + bila,b € Q} is a field. Is it algebraically closed?

(b) Is the field C(z) algebraically closed?
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